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Abstract

This article deals with the kinematic simulation of movable structures that go through special con®gurations of

kinematic bifurcation, as they move. A series of algorithms are developed for structures that can be modelled using pin-

jointed bars and that admit a single-parameter motion. These algorithms are able to detect and locate any bifurcation

points that exist along the path of the structure and, at each bifurcation point, can determine all possible motions of the

structure. The theory behind the algorithms is explained, and the analysis of a simple example is discussed in detail.

Then, a simpli®ed version of the particular problem that had motivated this work, the simulation of the folding and

deployment of a thin membrane structure forming a solar sail, is analysed. For the particular cases that are considered,

it is found that the entire process is inextensional, but a detailed study of the simulation results shows that in more

general cases, it is likely that stretching or wrinkling will occur. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Kinematic bifurcation; Deployable structures; Multibody system

1. Background and introduction

The work described in this article was motivated by di�culties encountered in the kinematic simulation
of deployable structures using standard algorithms. It had been found that, as the simulation of the motion
of a structure progressed through di�erent con®gurations, at some points, it became ill conditioned and
stopped. When the simulation was re-started, after the con®guration of the structure had been perturbed by
a small amount, the predicted behaviour appeared to be very sensitive to the particular perturbation that
had been applied. It was realised that these di�culties were due to the existence of bifurcation points along
the kinematic path followed by the structure. A particular problem that had proved insoluble was the
simulation of the folding/unfolding of a thin membrane forming a solar sail, which had been shown to work
®ne by physical modelling (Guest and Pellegrino, 1992).

Consider, for example, the two-dimensional pin-jointed structure shown in Fig. 1(a). Obviously, bar 2
can be moved horizontally, either to the left or to the right, and downwards by mobilising its single ®nite
amplitude mechanism. Denoting by m the number of independent mechanisms, m � 1 here. If bar 2 is
moved to the right, the con®guration shown in Fig. 1(b) will be obtained and, continuing to mobilise the
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mechanism in the same direction, ®nally the con®guration shown in Fig. 1(c) is obtained. In this con®g-
uration, two di�erent types of motion are possible, hence m � 2. In the ®rst motion, bar 2 remains parallel
to the base, Fig. 1(b), whereas in the second motion bar 1 does not move while bars 2 and 3 rotate about
joint 1, Fig. 1(d). Note that this choice between two di�erent motions is available only in the particular
con®guration of Fig. 1(c); once the structure has left this special con®guration, its motion is again deter-
mined by a single parameter.

All con®gurations of a movable structure can be represented in a con®guration space of suitable di-
mension. In this example, this space is R4 because the positions of joints 1 and 2 can be de®ned by two
cartesian coordinates per joint. A sequence of con®guration changes of the type described above de®nes a
kinematic path in this con®guration space, and the special con®guration of Fig. 1(c) corresponds to a point
of intersection of two di�erent paths. This point is called a kinematic bifurcation point.

Further insight can be gained by analysing the equilibrium matrix for the structure of Fig. 1 (Pellegrino
and Calladine, 1986). In the initial con®guration, Fig. 1(a), the equilibrium matrix is

Nomenclature

b number of bars
C compatibility matrix �b� dj�
ci row i of C�1� dj�
d dimension of space (2 or 3)
d vector of joint displacements �dj�
di nodal displacements of bar i �2d�
e vector of bar extensions �b�
H equilibrium matrix �dj� b�
j number of unconstrained joints
` path length
m number of independent inextensional mechanisms
p load vector �dj�
P i ith kinematic path
Qj coe�cient matrix of jth quadratic form �m� m�
�Qj orthonormal form of Qj�m� m�
r rank of equilibrium/compatibility matrix
RP point P in con®guration space
s number of states of self-stress
S second-order compatibility matrix �2d � 2d�
t vector of bar forces �b�
ui

r�j jth inextensional mechanism of structure in con®guration Ri�dj�
U matrix of left singular vectors �dj� dj�
Ui matrix containing rows of Um corresponding to bar i�2d � m�
Um matrix of inextensional mechanisms �dj� m�
V matrix of singular values �dj� b�
W matrix of right singular vectors �b� b�
Ws matrix of states of self-stress �b� s�
x; y; z Cartesian coordinates
bi ith solution vector �m�
d displacement amplitude parameter
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H �
0 ÿ1 0
1 0 0
0 1 0
0 0 1

2664
3775; �1�

whose rank is r � 3. In the con®guration of Fig. 1(c), RC, the equilibrium matrix is

H0 �
1 ÿ1 0
0 0 0
0 1 1
0 0 0

2664
3775; �2�

whose rank is r � 2.
The number of independent inextensional mechanisms of a pin-jointed structure is given by

m � 2jÿ r; �3�
where j is the number of unconstrained joints of the structure. The number of independent states of self-
stress, i.e. sets of bar forces that are in equilibrium with zero external loads, is

s � bÿ r; �4�
where b is the number of bars. According to Eqs. (3) and (4), the structure shown in Fig. 1 has m � 1 and
s � 0 in the initial con®guration, but m � 2 and s � 1 at the bifurcation point, thus showing that the bi-
furcation points are also special con®gurations that admit a state of self-stress.

Returning to the con®guration shown in Fig. 1(d), let us rotate bars 2 and 3 until they overlap with bar 1.
This con®guration, RB, is also a bifurcation point where, again, two di�erent motions are possible, m � 2.
We can either rotate bars 1 and 2 about joint 2, which now coincides with the left-hand support, or rotate
bars 2 and 3 about joint 1, which coincides with the right-hand support. Once one of these two options has
been chosen, the structure starts following another single-parameter path.

A topological map of all existing kinematic paths for this structure is shown in Fig. 2. This ®gure shows
that there are three bifurcation points (RB and RC have been discussed above, while RA corresponds to a
con®guration symmetric to RC) linked by three kinematic paths. The upper and lower parts of each path are
labelled P i and P i0. At a bifurcation point, the structure can either continue moving on a path with the same
number, or it can switch to a path with a di�erent number.

Fig. 1. A three-bar planar structure that has s � 0;m � 1 in any ordinary con®guration (a, b); (c) kinematic bifurcation with s � 1,

m � 2; (d) one of two possible motions out of bifurcation point.
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The kind of behaviour that is illustrated by the above example occurs in a variety of structures that
admit one or more ®nite-amplitude motions, but in most cases obtaining a complete map like that shown in
Fig. 2 is by no means straightforward. A three-dimensional example is the ring structure shown in Fig. 3. It
is well-known (e.g. Tarnai, 1980) that in the con®guration shown in Fig. 3(a), this structure has a ®nite
mechanism where the joints of the upper hexagon move alternately inwards and outwards so that, although

Fig. 2. Topological graph showing all possible kinematic paths of three-bar structure of Fig. 1.

Fig. 3. A hexagonal ring structure with s � m � 1 in any ordinary con®guration (a, c), but m � 3 at the point of bifurcation (b).
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the six-fold rotational symmetry of the initial con®guration is immediately lost, threefold rotational
symmetry is maintained. Tarnai (1989) has pointed out that the degree of kinematic indeterminacy in-
creases from m � 1 to m � 3 when the structure reaches the special con®guration shown in Fig. 3(b). At this
point, the structure can either continue moving along the same path, thus preserving its threefold rotational
symmetry, or it can join a number of alternative paths leading to unsymmetric con®gurations, e.g. Fig. 3(c).

Kinematic bifurcations are not limited to pin-jointed structures. They have been shown to occur in
movable pairs of regular tetrahedra with edges in sliding contact (Tarnai and Makai, 1989), and in many
mechanical linkages. Special con®gurations where the mobility of a linkage transitorily increases, are re-
ferred to as uncertainty con®gurations by Hunt (1978). Other authors have referred to such con®gurations
as ``cross-over positions'', ``¯attened con®gurations'' or ``locking con®gurations''. Some of these terms are,
however, only applicable to the case of planar mechanisms. Hunt states that a linkage does not ordinarily
encounter an uncertainty con®guration unless specially proportioned, we will return to this point at the end
of the article, and that ``uncertainty con®gurations need to be systematically studied, and suitable analytical
techniques developed to identify them, so that a mechanism designer can recognise them and back away
from them into safer regions.''

Hunt (1978) makes a distinction between stationary and uncertainty con®gurations. At a stationary
con®guration, one of the joint-freedoms is transitorily inactive. Therefore, even if such a joint were locked,
some motion of the other joints would be possible and although theoretically this motion may be only
in®nitesimal, in practice it may be ®nite due to the existence of joint clearances. A stationary con®guration
can be simple or multiple, depending on the number of joint-freedoms that are simultaneously inactive. An
uncertainty con®guration is, with our terminology, the same as a kinematic bifurcation. Amongst other
authors, Sugimoto et al. (1982) have developed a method for determining both stationary and uncertainty
con®gurations of single-loop mechanisms using screw theory. More recently, Litvin et al. (1986) have in-
vestigated the singularities in motion occurring in spatial linkages. They ®x the driving link and examine the
in®nitesimal mobility of the remaining links, which is given by the rank of a system matrix. Litvin and Tan
(1988) applied this technique to a speci®c linkage.

This article develops a series of algorithms forming a computational scheme to simulate the continuous
motion of a deployable structure that can be modelled using pin-jointed bars, and which admits a single-
parameter motion. The scheme is able to detect any bifurcation points that exist along the path of the
structure. At each bifurcation point, all possible motions of the structure can be determined, so that a
particular one can be selected by the user. The layout of the article is as follows: Section 2 gives a brief
outline of the computational scheme. Section 3 presents the theory behind the various algorithms that are
used, which are divided into ®rst-order algorithms that stimulate the motion along a uniquely determined
path, and second-order algorithms that determine all possible paths out of a kinematic bifurcation point.
Two solution techniques are described for the resulting system of quadratic equations, with di�erent levels
of accuracy and computational overhead. Section 4 describes the algorithm to converge to a bifurcation
point. The algorithms are applied to two simple examples in Section 5, and to the deployment simulation of
two small models of solar sail structures, in Section 6. Section 7 concludes the article.

2. Outline of kinematic simulation

The computations that are performed are based on the equilibrium matrix, H, of the structure. Alter-
natively, they could be formulated in terms of the transpose of the equilibrium matrix, i.e. the compatibility
matrix. The singular value decomposition (SVD) of H is used to identify complete sets of independent
inextensional mechanisms, from which any rigid-body mechanisms are removed, and independent states of
self-stress.

If the structure is at a bifurcation point, it is necessary to determine which of its mechanisms or their
combinations extend into ®nite motions. Although any linear combination of the set of the inextensional
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mechanisms de®nes, to the ®rst-order, a di�erent kinematic path, only those motions that satisfy a system
of second-order compatibility equations are, in fact, potential ®nite motions. Further, it is possible that
some paths actually coincide, and this can be discovered only by actually simulating ®nite-amplitude
motions of the structure.

Once a path out of a point of bifurcation has been selected, the single internal mechanism of the
structure is mobilised until the structure reaches the next bifurcation point. Along this single-parameter
path, a predictor±corrector algorithm based on the SVD of the equilibrium matrix is implemented, and a
special algorithm is developed to detect the existence of a bifurcation ahead of the current con®guration,
and to stop exactly there. Then, the analysis at the point of bifurcation is repeated.

Fig. 4 shows the path followed by a structure, initially at the bifurcation point R0. Three di�erent paths
can be taken at R0, and each path has two di�erent directions. Having chosen P 1, a single-parameter motion
is simulated until the assembly moves into another point of bifurcation, Rn.

3. Theory

Consider a pin-jointed structure with b bars and j non-foundation joints. The equilibrium matrix H,
relating the vector of bar forces, t, to the vector of nodal load components, p, has dj rows, where d � 2 or 3
is the dimension of the space in which the structure is being analysed, and b columns

Ht � p: �5�
The compatibility matrix relating the (small) nodal displacement components, d, to the bar extensions, e, is

Cd � e: �6�
It can be shown, e.g. by virtual work that

C � HT: �7�

3.1. First-order analysis

A general discussion of the links between linear structural mechanics and linear operators, that provides
a background to this section, can be found in Besseling (1979). The ®rst step in the computational pro-

Fig. 4. Kinematic path with bifurcation points at R0 and Rn.
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cedure is the determination of the total number of independent inextensional mechanisms m and the
number of states of self-stress s. These parameters can be determined from the rank r of the equilibrium
matrix H

m � djÿ r; �8�
s � bÿ r: �9�

In non-bifurcation con®gurations, the structures considered in this article have a single mechanism, m � 1,
and no states of self-stress, s � 0. Hence, from Eqs. (8) and (9)

djÿ b � 1:

The value of r is determined, together with orthogonal sets of m inextensional mechanisms and s states of
self-stress, from the SVD of the equilibrium matrix (Golub and van Loan, 1983; Pellegrino, 1993). The SVD
of the equilibrium matrix consists of a set of left singular vectors U � �u1; . . . ; udj�, a set of right singular
vectors W � �w1; . . . ;wb� and a set of non-zero singular values

such that

H � UVWT: �10�
The singular vectors, of unit magnitude, can be grouped into the following sub-matrices

Ur � �u1; . . . ; ur�; Um � �ur�1; . . . ; ur�m�;
Wr � �w1; . . . ;wr�; Ws � �wr�1; . . . ;wr�s�:

�11�

Because of the correspondence between equilibrium and compatibility matrices, Eq. (7), the singular vec-
tors have the following physical interpretation:

It follows from the above that a set of bar extention e is compatible if and only if it satis®es the condition

WT
s e � 0: �12�

Kinematic bifurcations are associated only with internal mechanisms, and hence, if the structure admits
any rigid-body mechanisms, they need to be removed from Um. An algorithm to remove rigid-body

Ur ± contains modes of extensional deformation
(loads that can be equilibrated by the structure, in its current con®guration);

Um ± contains modes of inextensional deformation, or mechanisms
(loads that cannot be equilibrated);

Wr ± contains sets of kinematically compatible extensions corresponding, through the
singular values, to the extensional modes in Ur

(bar forces in equilibrium with the external loads in Ur);
Ws ± contains sets of kinematically incompatible extensions

(states of self-stress).
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mechanisms from Um is described in Pellegrino and Calladine (1986); it will be assumed that Um contains
only internal mechanisms, m being the number of internal mechanisms.

Two di�erent cases are possible: (i) m � 1 with s � 0, and hence in the current con®guration the structure
admits a single-parameter ®nite motion, or (ii) m P 2 with s P 1, and hence the structure is at a bifurcation
point. In other words, because we are considering only assemblies with a single large displacement
mechanism, if more than one in®nitesimal mechanism is found in some particular con®guration, then in
that con®guration the structure must be at a point of kinematic bifurcation.

Case (i) can be dealt with using the results of the ®rst-order analysis described above, Section 3.2. Case
(ii) requires the development of additional theory, Section 3.3, to determine the distinct kinematic paths
along which the structure can move out of the bifurcation point. The computation of these kinematic paths
requires the use of compatibility equations that include terms of order higher than those included in Eq. (6).

3.2. Predictor±corrector incrementation

Consider a structure with m � 1 that is moving along a kinematic path, and assume that the current
con®guration, Ri, is not a bifurcation point. To ®nd the next con®guration of the structure we impose a
®nite amplitude of its inextensional mechanism ui

r�1 (predictor step) and then carry out a series of iterative
corrections (corrector steps) that eliminate any strain in the bars, Fig. 5. The predictor step is

Ri0 � Ri � ui
r�1d: �13�

The sign of d controls the direction of motion. Because there is no guarantee that the SVDs of the equi-
librium matrices in successive con®gurations will automatically produce mechanisms with consistent signs,
the sign of d has to be such that the kinematic path continues to be followed in the desired direction. This is
ensured by checking the sign of the dot product between the mechanisms in the con®gurations iÿ 1 and i.
The sign of d is reversed if

uiÿ1
r�1ui

r�1 ' ÿ1: �14�

The maximum value of d that is allowed (smaller values may be used to increase the number of points on
the path) depends upon the region of the kinematic path along which the structure is moving. If the smallest
non-zero singular value, vr, is su�ciently large, the structure is far away from the next bifurcation point,
and hence the magnitude of d is chosen based upon a length parameter, such as the root mean square of all
bar lengths. On the contrary, when the structure is converging towards a bifurcation point, it may be
necessary to decrease the magnitude of d, see Section 4.

Fig. 5. Predictor±corrector increments along single-parameter path.
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In the con®guration Ri0 , the bars of the structure have undergone extensions e which need to be cor-
rected. Following Besseling et al. (1979) and Pellegrino (1993), the minimal (in a least square sense) cor-
recting displacement d due to the extensions ÿe is computed from

d � ÿ
Xr

i�1

wT
i e

vi
ui: �15�

The con®guration Ri�1 � Ri0 � d is the strain-free con®guration nearest to Ri0 . This corrector step can be
repeated a number of times, until a desired convergence accuracy is achieved.

3.3. Second-order compatibility equations

These equations will be derived in two-dimensional space, for compactness, as the extension to the three-
dimensional space is trivial. Consider bar i, of length L, between nodes A �XA; YA� and B �XB; YB�, Fig. 6. Its
length is given by������������������������������������������������

�XB ÿ XA�2 � �YB ÿ YA�2
q

� L: �16�

Now, consider a displaced con®guration, de®ned by the nodal displacement components �uA; vA� and
�ub; vB�; the new length of the bar is given by������������������������������������������������������������������������������������������������������

��XB � uB� ÿ �XA � uA��2 � ��YB � vB� ÿ �YA � vA��2
q

� L� e: �17�

Squaring both sides

��XB � uB� ÿ �XA � uA��2 � ��YB � vB� ÿ �YA � vA��2 � L2 � e2 � 2eL: �18�
Expanding Eq. (18) and subtracting Eq. (16), we obtain

XA ÿ XB

L
uA � YA ÿ YB

L
vA � XB ÿ XA

L
uB � YB ÿ YA

L
vB � 1

2L
�u2

A ÿ 2uAuB � u2
B � v2

A ÿ 2vAvB � v2
B�

� e� e2

2L
: �19�

The linear part of Eq. (19), i.e. the ®rst four terms on the left-hand side and the ®rst term on the right-hand
side, appear already in the linear compatibility equation for the bar, i.e. in the ith equation of the linear
system in Eq. 6. The second-order terms on the left-hand-side can be written in matrix form as

Fig. 6. Original and deformed con®gurations of bar i.
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1

2L
uA vA uB vB� �

1 0 ÿ1 0
0 1 0 ÿ1
ÿ1 0 1 0
0 ÿ1 0 1

2664
3775

uA

vA

uB

vB

2664
3775: �20�

Introducing

di �
uA

vA

uB

vB

2664
3775; S �

1 0 ÿ1 0
0 1 0 ÿ1
ÿ1 0 1 0
0 ÿ1 0 1

2664
3775 and ei � e� e2=2L �21�

Eq. (19) becomes

cidi � dT
i Sdi � ei: �22�

Here, ei is a higher-order measure of the extension of bar i which, to the ®rst-order, coincides with the
standard measure (current length ÿ initial length). ci is the ith row of the compatibility matrix C. For a
structure with b bars we can write b equations of this type, one for each bar.

Next, consider the most general motion of nodes A and B that causes no ®rst-order extensions in any
bars of the structure. It has the expression

di � Uib; �23�
where the vector b � �b1; . . . ; bm�T contains m arbitrary coe�cients. Ui is a matrix with 2d rows and m
columns, obtained from Um by selecting the rows that correspond to bar i. i.e. to nodes A and B.

Substituting Eq. (23) into Eq. (22), we obtain b equations of the type

ciUib� bTUT
i SUib � ei; i � 1; . . . ; b: �24�

In Eq. (24), the ®rst term is equal to zero, to the ®rst order, because we are considering a motion that is ®rst-
order inextensional. Hence, only the second-order part of the equation needs to be considered

bTUT
i SUib � e�2�i : �25�

Substituting Eq. (25) into Eq. (12) 2 we obtain a system of s equations, each of the typeXb

i�1

ti;j�bTUT
i SUib� � 0; j � 1; . . . ; s; �26�

where ti;j is the axial force in bar i, for state of self-stress j (ti;j � entry i in wr�j�.
De®ning

Qj �
Xb

i�1

ti;jU
T
i SUi; �27�

the second-order compatibility equations can be written in the form

bTQjb � 0; j � 1; . . . ; s: �28�
This is a system of s quadratic equations, and the kinematic paths out of the point of bifurcation can be
obtained by ®nding the intersections of the corresponding s quadric surfaces. Of the in®nite number of ®rst-

2 This compatibility condition was derived for in®nitesimal bar extensions, but it has to be also satis®ed by higher-order measures of

extension, provided that the con®guration of the structure is substantially unchanged.
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order inextensional mechanisms Umb, only those particular mechanisms that satisfy the second-order
compatibility equations represent potential ®nite motions.

An alternative derivation of the same second-order compatibility equations can be found in Kuznetsov
(1991). The same equations can be obtained also by considering the out-of-balance forces that are induced
by imposing small amplitudes of the in®nitesimal mechanisms, after applying each state of self-stress onto
the structure (Calladine and Pellegrino, 1991).

Before going any further, it is convenient to normalise the quadratic forms in Eq. (28). Computationally,
this is done by representing the matrices Qj by vectors of length m2, which are orthogonalised by the Gram±
Schmidt technique (Strang, 1980). Each of the resulting unit vectors is then transformed back into a square
matrix �Qj. So, ®nally the system of quadratic equation is

bT �Qjb � 0; for j � 1; . . . ; s: �29�

3.3.1. Solution of second-order compatibility equations
The number of solutions of a system of s algebraic equations of order 2 can be at most 2s. This follows

from Bezout's Theorem (Semple and Roth, 1949), which can be stated in the form:
In the projective space Sr, r generic irreducible primals of order n1; n2; . . . ; nr; have n1n2 . . . nr common

points.
Recall that the elements of Sr are points with r � 1 homogenous coordinates, and a primal of order n is

the locus of points de®ned by a polynomial equation of degree n. For s second-order primals, n1 �
n2 � � � � � ns � 2 and hence the number of common points is 2s. Consider the case s � 3: the 23 � 8
intersection points of three ellipsoids are shown in Fig. 7(a). Some, or indeed all, of these intersections may
be imaginary, Fig. 7(b), or there may be a smaller number of multiple intersections, Fig. 7(c). Finally, there
may be improper intersections with in®nitely many points, Fig. 7(d), in which case Bezout's theorem does
not apply.

Both the case of multiple intersections and of improper intersections can be identi®ed by testing the
stability of the intersection, i.e. by ®nding out if the number of intersection points changes for small
perturbations of the primals. In practice, because the linear independence of the quadratic forms �Qj does
not give any guarantees on the type of intersection, all of the above cases are, in principle, possible.

Two alternative approaches have been implemented to determine the solutions of Eq. (29).
The ®rst approach aims to determine a closed form solution using the method of Gr�obner bases

(Buchberger, 1985) which is an extension to r � 1 variables of what one would naturally do for a set of
polynomials in only one variable. For such a case, the greatest common divisor of the polynomials can be
found and each polynomial can be divided by this divisor to check if the remainder is zero. The method of
Gr�obner bases extends this idea to multivariate polynomials (Becker and Weispfenning, 1993). Using al-
gebraic rules, a `Gr�obner basis' is constructed for the polynomials. Each polynomial that is to be included
in the Gr�obner basis is determined by successively reducing the given polynomials and dividing out
common factors, and when no further reduction is possible, the polynomial is included in the Gr�obner
basis. The zeros of the polynomials included in the Gr�obner basis determine the roots of the original system
of the multivariate algebraic equations.

In recent years, Gr�obner bases algorithms have been implemented in symbolic manipulation packages,
such as AXIOM and Mathematica. The function `solve' in AXIOM determines all possible real roots of a
system of the multivariate algebraic equations; however, the runtime of this algorithm grows exponentially
with the size of the problem (Buchberger, 1985; Jenks and Sutor, 1992). For our case, as the number of
states of self stress s increases, the number of quadratic equations increases correspondingly, and the
number of intersections increases exponentially. For example, for s � 4 there will be up to 24 � 16 inter-
sections, for s � 5 the number of intersections goes up to 25 � 32, and so on. Therefore, although feasible in
theory, the method of Gr�obner bases is computationally complex and potentially very time consuming.
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The computing time for the determination of roots of a system of polynomial equations using AXIOM
depends upon two other factors. First, only numeric or symbolic solutions to a system of equations with
exact coe�cients can be found (Jenks and Sutor, 1992). Because the coe�cients of Eq. (29), are real
numbers, exact coe�cients can only be obtained either by truncation into integers, or by using a rational
approximation of the real numbers. In both cases, an error is introduced and the 2s solutions may no longer
be correct. To increase the accuracy, one can increase the number of digits by multiplying each line of Eq.
(29) by a suitable scaling factor, before truncating its coe�cients, but this slows down the Gr�obner fac-
torisation. Runtime is also controlled by the convergence accuracy which is required.

Table 1 compares the solution times required, as s increases, using the methods of integer truncation and
rational approximation. For integer truncation, a multiplication factor of 103 and a precision value of 10ÿ4

were used. For integer truncation, as the multiplication factor is increased, the number of correct roots that
are found also increases. However, this is achieved at the expense of additional cpu time. Table 2 shows that
®nding 13, instead of 12, of the 24 � 16 solutions of the simple space sail model, presented in Section 7
required a seven-fold increase in the cpu time. Note that in all cases AXIOM actually ®nds 2s roots, but
some are incorrect due to truncation errors. These incorrect roots can be used as the starting points for a
numerical, non-linear solver which will ®nd the remaining correct roots. As s increases, the computing times
required by AXIOM quickly become impractical; therefore for s P 4, an alternative solution procedure
was developed.

Fig. 7. Intersections of three paraboloids at: (a) eight distinct points; (b) four distinct points; (c) one multiple point; (d) in®nitely many

points along an ellipse, plus two distinct points.
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The second approach is purely numerical and uses a standard non-linear equation solver. Such algo-
rithms start from an initial starting point and perform a series of iterations to ®nally converge upon the
nearest solution. The key to ®nding as many di�erent solutions as possible lies in providing well distributed
starting points spanning the entire space of ®rst-order mechanisms. As the dimension of the space is
m � s� 1, whereas there are only s equations, it is necessary to normalise the equations with respect to one
variable; this introduces the normalisation condition

kbk � 1: �30�
This condition represents the intersection of a hypersphere of unit radius, with the s second-order com-
patibility equations. For s � 1, for example, the space of ®rst-order mechanisms is two-dimensional, and
this normalisation is analogous to intersecting a conic with a circle of unit radius. Similarly for s � 2, the
space of mechanisms is three-dimensional and we look for the intersections of two quadric surfaces with a
unit sphere.

By considering well distributed points on this hypersphere and using them as the starting points for the
non-linear equation solver ``fsolve'' available in Matlab (Mathworks, 1997), a number of di�erent solutions
are found. Repeated solutions are eliminated by checking the dot product of each new solution with all
those found previously. If the dot product is close to 1, the root has already been found. For example, if
n�< 2s� solutions have been determined, then for bn�1 the dot products bi � bn�1; i � 1; . . . ; n are computed.
If

jbi � bn�1j ' 1 for any i � 1; . . . ; n; �31�
then the root has already been found and the next starting point is considered. Otherwise, bn�1 is added to
the set of solutions and n is incremented by one.

Depending on how ®nely the starting points are distributed on the hypersphere, an increasing proportion
of the 2s solutions will be determined. For the same problem with s � 4 that was considered above, with 42
initial points, 15 correct solutions were identi®ed in less than 2 cpu min.

3.4. Finite motion paths

Although each solution found in Section 3.3 de®nes a kinematic path out of the point of kinematic
bifurcation, in fact di�erent second-order solutions may correspond to the same kinematic path. To ®nd
out, ®nite-amplitude motions of the structure have to be considered.

Table 1

Solution times using AXIOM (cpu min)

States of self-

stress (s)

Computing time Number of solutions

(2s)

Number of correct so-

lutionsInteger truncation Rational approximation

2 0.2 0.3 4 4

3 0.3 1 8 8

4 21.5 200 16 12

Table 2

Variation of computing time with convergence accuracy, for a problem with 24 � 16 solutions

Multiplication factor cpu min Number of correct solutions

103 21.5 12

104 38.2 12

108 153.9 13
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Consider a structure at the bifurcation point R0, Fig. 8, for which a set of solutions of the second-order
compatibility equations have been determined with the methods of Section 3.3. Each solution de®nes a
possible ®nite path for the structure. To test for the existence of the ith ®nite motion path, we consider the
®nite-amplitude displacement R0 �Umbid and then iterate, as explained in Section 3.2, to eliminate any
strain in the bars. The corrector step is repeated a number of times, until the desired convergence accuracy
is achieved. If the solution does not converge after a speci®ed number of steps, it is deemed that no ®nite
motion path exists in the neighbourhood of the ith solution of Eq. (29).

For each path that is identi®ed, the structure is allowed to move a distance `, measured along the path,
using the predictor±corrector algorithm of Section 3.2. The con®gurations RP i

, all at a distance ` from the
point of bifurcation R0, are then compared. Let

Ti � RP i ÿ R0: �32�
To check the path i is di�erent from the previous iÿ 1 paths, the dot products of the displacement vectors
are computed. If

jTi � Tkj
kTikkTkk ' 1 for any j � 1; . . . ; �iÿ 1�; �33�

then path i has already been identi®ed.

4. Convergence to a bifurcation point

Consider a structure that is moving along a kinematic path, by a series of predictor±corrector steps with
a constant step size d (Section 3.2). As the next bifurcation point is approached, the lowest non-zero sin-
gular value vr starts decreasing. The kinematic simulation has to switch to a di�erent algorithm, which is
capable of predicting and stopping exactly at the point of bifurcation, where a new higher-order analysis
will be carried out.

Before switching to the algorithm described in this section, two conditions need to be satis®ed. First, vr

must be less than a certain threshold value �, indicating that the assembly is getting close to a bifurcation
point. Second, vr should be decreasing in successive steps, i.e. vn�1

r ÿ vn
r < 0.

As the bifurcation point is approached, a number of problems arise. First, there is the danger of nu-
merical ill-conditioning. Second, at the bifurcation point itself it is easy to swap paths, as a number of paths
go through this point. Finally, it is possible to jump to the other side of the bifurcation without realising
that this had happened.

Fig. 8. Identi®cation of distinct ®nite motions out of a bifurcation point.
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Consider an assembly in con®guration Rnÿ1 approaching a bifurcation point Rn, as shown in Fig. 9. To
avoid the problems listed above, it is best to predict the single-step displacement to be imparted to the
assembly so that it can be moved directly to Rn. In general, the variation of the smallest singular value near
a bifurcation point should be of second- or higher-order. This is because each singular value relates a bar
extension vector to a corresponding displacement vector (Pellegrino, 1993). Sampling vr at the three last
con®gurations, Rnÿ3;Rnÿ2;Rnÿ1, a second-order Lagrangian polynomial in ` is ®tted through these points

vr � a`2 � b`� c: �34�
The intersection between this polynomial and the axis vr � 0 can be calculated. Depending upon the sign of
the coe�cient a, two cases are possible. If a < 0, Fig. 9(a), the quadratic equation

a`2 � b`� c � 0 �35�
can be solved and, of the two solutions, the one closest to `nÿ1 is chosen.

If a > 0, Fig. 9(b), the curve should be tangent to the axis vr � 0, but numerical round-o� leads either to
the situation in Fig. 10(a), where there is no real solution, or Fig. 10(b), where the quadratic equation
admits two solutions. In the former case, `n is de®ned from the minimum of the polynomial, in the latter
case it is taken to be the solution closest to lnÿ1.

Having predicted the con®guration where vr is expected to be zero, the amplitude parameter for the step
that converges to the bifurcation point is calculated from

d � `n ÿ `nÿ1: �36�
In some cases, it has been observed that the variation of the lowest non-zero singular value near a bifur-
cation point is linear, rather than quadratic. The reason for this is unclear at present but, as Eq. (34)
contains a linear term, it works well in all cases.

Fig. 10. E�ects of numerical errors on lowest non-zero singular value, near a bifurcation point.

Fig. 9. Variation of lowest non-zero singular value near a bifurcation point.
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Having predicted the displacement amplitude necessary to move the assembly into the point of bifur-
cation, a forward calculation is performed. Using the value of d from Eq. (36), the single mechanism in the
con®guration Rnÿ1 is mobilised and the corresponding strain-free con®guration is computed with the
standard predictor±corrector algorithm. If in the new con®guration vr � 0, then the bifurcation has been
found. Otherwise, the following two checks are carried out. First, to ensure that the assembly has not
switched paths, it is checked that the inextensional mechanisms in the con®guration Rnÿ1 and in the new
con®guration are approximately identical, hence

jun
r�1unÿ1

r�1 j ' 1: �37�
Second, to check that the assembly has yet to reach the bifurcation point a further, small displacement is
imparted. If the smallest non-zero singular value is found to increase, it means that the assembly has al-
ready crossed the bifurcation point. If both checks are satis®ed, the structure is moved from con®guration
Rnÿ1 to Rn. If either check is not satis®ed, d is decreased and the forward calculation is repeated. This it-
eration is repeated until vr becomes smaller than a speci®ed tolerance.

5. A simple example

Consider the three-bar structure of Fig. 1, which was already discussed in Section 1. The equilibrium
matrix for the structure at the bifurcation point RC, Fig. 1(c), is given in Eq. (2) and its SVD is

�38�

Hence, the rank of H0 is r � 2 and the matrices containing the m � 2 mechanisms and s � 1 states of self-
stress are

Um �
0 0
ÿ1 0
0 0
0 1

2664
3775; Ws �

0:5774
0:5774
ÿ0:5774

24 35: �39�

The coe�cient matrix of the second-order compatibility equation is computed from Eq. (27), as follows:

Q1 � 0:5774
0 ÿ1

0 0

" #
1 0

0 1

" #
0 0

ÿ1 0

" #
� 0:5774

0 ÿ1 0 0

0 0 0 1

" # 1 0 ÿ1 0

0 1 0 ÿ1

ÿ1 0 1 0

0 ÿ1 0 1

266664
377775

0 0

ÿ1 0

0 0

0 1

266664
377775

ÿ 0:5774
0 0

0 1

" #
1 0

0 1

" #
0 0

0 1

" #
: �40�

This gives
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Q1 � 1:1547 0:5774
0:5774 0

� �
�41�

and, thus, the second-order compatibility equation is

b1b2� � 1:1547 0:5774
0:5774 0

� �
b1

b2

� �
� 0; �42�

which can be simpli®ed to

b2
1 � b1b2 � 0: �43�

Including the normalisation condition, Eq. (30), we obtain the following system of quadratic equations

b2
1 � b1b2 � 0;

b2
1 � b2

2 � 1;

�
�44�

whose solutions are b1 � �ÿ1 1�T and b2 � �0 1�T. These two solutions correspond to two distinct kinematic
paths out of RC, shown in Fig. 1(b) and (d).

We choose path P 1, corresponding to b1, and follow the motion of the structure, which has a single
mechanism, until it approaches the next bifurcation point, RA. Convergence to this bifurcation point was
achieved in a single step; the lowest non-zero singular value in the penultimate step was vr � 0:0052, at this
point an amplitude parameter d � 0:0091 was computed with the method of Section 4, and in the following
step vr � 7:14� 10ÿ7. Because this number is smaller than the required tolerance �10ÿ6�, the structure was
considered to have converged to RA. Hence, a new analysis of the available paths was carried out.

Fig. 11 shows the variation of the lowest non-zero singular value with path length for a complete ki-
nematic simulation starting in con®guration RA, going to RC through path P 1, then to RB through path P 3,
and then back to RA through path P 2.

6. Folding and deployment of solar sails

An important motivation for developing the algorithms presented in this article was being able to
simulate the folding and deployment of a thin membrane structure that had been proposed by Temple and
Oswald (Cambridge Consultants, 1989) for a solar powered spacecraft that would go to Mars. The original

Fig. 11. Variation of lowest non-zero singular value for kinematic simulation along paths P 1; P 3 and P 2, of structure in Fig 1.
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proposal envisaged a circular membrane with a diameter of 276 m that, during launch, would be wrapped
around a spacecraft with a diameter of 4 m.

Guest and Pellegrino (1992) analysed the folding pattern that is required to wrap such a membrane
around a central hub. In the simplest case, Fig. 12(c), this consists of an odd number of near-radial folds
that crease the membrane alternately up, valley folds, and down, crest folds, intersected by sets of parallel
folds. The crest and valley folds originate at the corners of a straight-sided polygon that forms the hub.

To make small physical models of this structure, it is ®ne to assume that the membrane has zero
thickness, in which case the crest and the valley folds are straight. However, in larger models, one
has to account for the gradual increase in the e�ective size of the hub as the membrane is wrapped around
it.

These fold patterns are worked out by considering only the fully folded and fully deployed con®gura-
tions. Hence, they do not guarantee that the folding process itself will not require either stretching of the
membrane, or changing the shape of the fold lines. The only way of ®nding out if small e�ects of this kind
play a role in this type of folding is to carry out a kinematic simulation of the folding/deployment process.

Thus, the three main questions to be answered by the simulation are

Fig. 12. Wrapping of the thin membrane around a central hub: (a) deployed and (b) wrapped con®gurations; (c) folding pattern with

six near-radial folds.
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· Does there exist a continuous, strain-free motion that takes the assembly from the open to the folded
con®guration?

· Is there a possibility that the membrane might deploy/retract into an unexpected con®guration, due to
the existence of bifurcation points along its path?

· Does the hub remain planar during this motion?
To answer these questions, the membrane will be assumed to be of zero thickness, and modelled as a pin-

jointed bar assembly consisting of bars placed along the fold lines of the membrane. An additional pin-
jointed bar is placed along a diagonal of each trapezium bounded by successive parallel folds.

6.1. Square hub

Here, we analyse a solar sail of the smallest possible size and with the smallest possible number of crest
and valley folds, i.e. four in total. Its pin-jointed model is shown in Fig. 13. This assembly has b � 16 bars
and j � 6 non-foundation joints. Two joints, 1 and 3, are fully constrained. In a general con®guration, this
structure has two ®nite inextensional mechanisms, a rigid-body rotation about the axis 1±3, and an internal
mechanism.

To simulate the folding process, the equilibrium matrix of the pin-jointed assembly was set up in the fully
deployed, i.e. ¯at, con®guration. The SVD of the equilibrium matrix determines six independent mecha-
nisms and, after elimination of rigid-body mechanism, a set of internal mechanisms Um was obtained. A set
of independent states of self-stress Ws was also obtained. As in this con®guration, the number of mech-
anisms is greater than one, the structure is at a bifurcation point, and hence the higher-order analysis of
Sections 3.3 and 3.4 was carried out. The s � 4 second-order compatibility equations in the m � 5 variables
b � �b1 . . . b5� are

bTQib � 0; for i � 1 . . . 4; �45�
where

Fig. 13. Pin-jointed model of smallest possible solar sail.
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Q1 �

407 361 340 92 ÿ28

361 ÿ31 302 ÿ12 ÿ22

340 302 321 ÿ52 4

92 ÿ12 ÿ52 ÿ156 56

ÿ28 ÿ22 4 56 ÿ32

26666664

37777775;

Q2 �

ÿ258 320 ÿ97 ÿ129 32

320 ÿ716 18 186 20

ÿ97 18 ÿ22 74 56

ÿ129 186 74 251 ÿ70

32 20 56 ÿ70 9

26666664

37777775;

Q3 �

134 ÿ4 209 ÿ166 215

ÿ4 350 ÿ66 197 152

209 ÿ66 102 266 74

ÿ166 197 266 513 ÿ162

215 152 74 ÿ162 ÿ113

26666664

37777775;

Q4 �

52 ÿ1 ÿ83 4 ÿ342

ÿ1 49 ÿ59 ÿ151 ÿ272

ÿ83 ÿ59 337 218 311

4 ÿ151 218 209 ÿ73

ÿ342 ÿ272 311 ÿ73 302

26666664

37777775:

All entries in the above matrices have been multiplied by 103 and then rounded o� to the nearest integer.
Eq. (45) is subject to the normalisation condition

b2
1 � b2

2 � b2
3 � b2

4 � b2
5 � 1: �46�

According to Bezout's theorem, 24 � 16 solutions can be expected and, as mentioned in Section 3.3.1,
the computing time required to ®nd them by the method of Gr�obner bases would be very long. Hence, the
root scanning procedure was used and 15 solutions were found in less than two cpu min. Fig. 14 shows the
con®gurations that were obtained by simulating the motion of the structure along these 15 paths. All of
these con®gurations are at a distance ` � 1:75 from the ¯at con®guration. Note that a number of kinematic
paths are related by symmetry considerations, as the assembly has four-fold cyclic symmetry and the
folding pattern has two-fold symmetry. For example, path 8 can be obtained by rotating path 6, through
180° about the z-axis.

Path 12 corresponds to the path that takes the sail into its fully folded con®guration. Nodes 2 and 4
move down (into the paper), whereas nodes 5 and 7 move up (out of the paper). In fact, there is a second
path that also takes the sail into its fully folded con®guration, corresponding to the 16th solution, which
was not identi®ed by the root scanning procedure. This alternative path requires nodes 2 and 4 to move up
while nodes 5 and 7 move down. In both cases, two hub nodes have to move out of plane. Thus, depending
upon the motion of the hub, up or down, two equivalent kinematic paths leading to the same compact
folded pattern exist.
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6.2. Hexagonal hub

We will now consider the folding of a pin-jointed structure that consists of two loops of triangles that
wrap around a six-sided hub, Fig. 15. This (slightly) more realistic model of the solar sail will allow us to
give complete answers to the three questions that were posed at the beginning of this section.

Three of the hub nodes, 2, 4 and 6, are fully constrained. The other nodes are connected by bars to node
1, which is allowed to move only in the z-direction, to maintain the hexagonal shape of the hub. The
equilibrium matrix of this assembly has size 46� 45. In a general con®guration, the assembly has only one
®nite internal mechanism, but in the fully deployed, ¯at con®guration RA in which we started our simu-
lation there are m � 16 independent in®nitesimal mechanisms and s � 15 independent states of self-stress.

After a laborious analysis of this bifurcation point, with its potential 215 paths, the correct kinematic
path was picked up, thus starting the motion illustrated in Fig. 16. Fig. 16(c) shows a partially folded
con®guration, where nodes 8±13 lie directly above or below the hub nodes. This con®guration corresponds
to the bifurcation point RB, which our algorithm took 35 steps to converge to. Although in this con®gu-
ration the hub is planar, it had distorted out-of-plane during the motion from RA to RB. At RB, there are

Fig. 14. Projection onto x; y plane of 15 of 24 � 16 motions out of fully deployed con®guration, of solar sail with a square hub.

P. Kumar, S. Pellegrino / International Journal of Solids and Structures 37 (2000) 7003±7027 7023



m � 4 in®nitesimal mechanisms and s � 3 states of self-stress and, having computed 23 � 8 distinct ®nite
paths, it was found that there are two axisymmetric motions both of which lead to the correct folded
con®guration. These two solutions correspond to node 1 moving up or down.

As the assembly approached the fully folded con®guration RC, three non-zero singular values started
approaching zero. The con®guration RC, shown in Fig. 16(e), is also a bifurcation point, which took 26
steps to converge to. In this con®guration, the central hub is again planar.

Next, the structure was deployed back to the original con®guration RA. The deployment simulation
began with an analysis of bifurcation point RC, where an axisymmetric deployment path was chosen.
During deployment, the assembly passed through the bifurcation point RB and, ®nally, as it approached the
fully open con®guration, 15 singular values started approaching zero. Convergence to the bifurcation point
RA required 149 simulation steps.

The variation of the 15 singular values that were zero at the start of the simulation described above are
plotted in Fig. 17 for the entire kinematic simulation. One singular value is always zero, corresponding to
the single internal mechanism. Due to the cyclic symmetry of the assembly, some of the singular values
coincide and therefore the number of distinct curves that are visible on the plot is actually less than 15.

Note that the plot in Fig. 17 is symmetric about the centre line, as the same path was followed both
during folding and deployment. In fact, it is possible to change path at the ®rst bifurcation and follow an
alternative path. This would also produce the correct folding pattern, but the variation of the singular
values would no longer be symmetric.

Also note that the number of steps taken to converge to successive bifurcation points increased during
the course of the simulation. Thus, it took 35, 26, 58 and 149 steps to converge to the bifurcation points
RB;RC;RB and RA, respectively. It appears that there is a link between the rank de®ciency of the equilibrium
matrix, i.e. the number of singular values that are approaching zero, and the number of iteration steps

Fig. 15. Pin-jointed model of small solar sail with six near-radial folds and hexagonal hub. cf. Fig 12(c).
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required for convergence. However, the build up of numerical errors and inaccuracies may also be a sig-
ni®cant e�ect, as convergence to the same con®guration, RB, required 35 steps the ®rst time and 58 the
second time.

Fig. 16. Projection onto x; y plane of folding simulation of structure in Fig. 15.

Fig. 17. Variation of 15 lowest non-zero singular values during folding and deployment of solar sail model of Fig. 15.
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6.3. Conclusions

The kinematic simulations described in Sections 6.1 and 6.2 suggest that the deployment/folding be-
haviour of a theoretical membrane of zero thickness and with straight folds is strictly inextensional, pro-
vided that the hub is allowed to distort out of plane. It has been shown that the deployment process is
radially sequential, i.e. a complete loop of triangles has to unwrap completely before the next loop starts
unwrapping, and there is a kinematic bifurcation every time a loop completes its unwrapping.

It should be noted that in the simulation, the bars and joints of the pin-jointed model of the solar sail
were allowed to pass through each other, although this never happened. It should also be noted that the
part of the membrane that is already wrapped around the hub does not remain stationary, but moves by a
small amount. This is evident in Fig. 16(d), as a smaller hexagon inside the hub is evidence of the fact that
the projections of joints 8±13 have moved beyond the hub joints. So, it can be concluded that, although in
the particular simulations that we have carried out there was no physically unacceptable interference be-
tween di�erent parts of the membrane, it is likely that there would be interference if one considered a larger
solar sail, whose folding pattern consists of several loops of triangles. Of course, the e�ect of modelling the
thickness of the membrane would also need to be considered in this case.

7. Discussion

This article has introduced a series of kinematic simulation techniques for movable structures that can be
modelled as pin-jointed assemblies, and which go through kinematic bifurcation points as they move. These
techniques have been shown to be a useful tool for the analysis of solar sail-type deployable structures.
Further applications are available in Kumar (1996).

We have considered only the case of structures with a single mechanism and no states of self-stress in an
ordinary con®guration, and which have s P 1 and m P 2 only at bifurcation points. This is the case that is of
greatest practical interest for deployable structures, where it is generally required that m � 1 to avoid uncertain
behaviour during deployment. The analysis of more general types of structures should be a straightforward
extension of the algorithms that have been presented here. The only practical di�culty will be in choosing a
particular type of motion out of the in®nitely many that are possible in any ordinary con®guration.

Much more challenging will be going beyond pin-jointed structures, to link our present approach to
mechanical linkages with di�erent types of joints. The existence of kinematic bifurcations in deployable
structures that cannot be modelled as pin-jointed has already been shown, and it would be interesting to
explore the possibility of using higher-order compatibility conditions in that context.

Finally, it should be noted that kinematic bifurcations arise due to a number of bars in an assembly
being of equal length, or the sum of the lengths of certain bars being equal to the length of an another bar,
etc. It is possible to avoid that a number of kinematic paths converge at the same point by deliberately
introducing some imperfections in the structure. In other words, by changing some of the bar lengths the
kinematic paths can be separated out, thereby reducing the possibility of the assembly moving along an
incorrect kinematic path. Although it is likely that this will always happen in practice, due to manufac-
turing inaccuracies, it would be useful to carry out systematic studies of which particular types of imper-
fections should be ``designed into the structure'' to avoid anomalous behaviour at bifurcation points.
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